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The Nosé—Hoover Thermostated Lorentz Gas
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We apply the Nosé-Hoover thermostat and three variations of it, which control
different combinations of velocity moments, to the periodic Lorentz gas. Switch-
ing on an external electric field leads to nonequilibrium steady states for the four
models. By performing computer simulations we study the probability density,
the conductivity and the attractor in nonequilibrium. The results are compared
to the Gaussian thermostated Lorentz gas and to the Lorentz gas as thermo-
stated by deterministic scattering. We find that slight modifications of the Nosé—
Hoover thermostat lead to different dynamical properties of our models.
However, in all cases the attractor appears to be multifractal.

KEY WORDS: Nonequilibrium steady states; chaotic transport; Nosé—
Hoover thermostat; multifractal attractor; periodic Lorentz gas.

1. INTRODUCTION

In a system of particles under an external force a nonequilibrium steady
state can be obtained by applying a thermostat."® Deterministic and
time-reversible bulk thermostating is based on introducing a momentum-
dependent friction coefficient in the equations of motion. One such
mechanism is the Nosé-Hoover thermostat.**> It creates a canonical
ensemble in equilibrium and yields a stationary distribution of velocities in
nonequilibrium. Another version, the Gaussian isokinetic thermostat,¢®
leads to a microcanonical density for the velocity components in equi-
librium and to a constant kinetic energy in nonequilibrium. Though the
microscopic dynamics of these thermostated systems is time-reversible the
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macroscopic dynamics is irreversible in nonequilibrium. This is related to
a contraction onto a fractal attractor characterized by a Lyapunov spec-
trum with a negative sum.(%13

The comparison of different thermostating mechanisms and the iden-
tification of their common properties is crucial to obtain a general charac-
terization of nonequilibrium steady states.!*'® Standard bulk thermo-
stating schemes like Gauss and Nosé-Hoover have led to the conclusion
that nonequilibrium steady states generated by time-reversible thermostats
are characterized by the existence of fractal attractors. These attractors, in
turn, furnish an identity between irreversible entropy production and phase-
space contraction.® 161®) Moreover, this identity is at the heart of specific
formulas relating transport coefficients to Lyapunov exponents.%17-20 We
remark that the physicality of this thermostated systems approach to non-
equilibrium has been questioned in refs. 14, 15, and 21.

The characteristic features of thermostated many-particle systems have
been recovered for a specific one-particle system, the Gaussian thermo-
stated Lorentz gas.(1% 11181922225 The periodic Lorentz gas consists of a
particle that moves through a triangular lattice of hard disks and is elasti-
cally reflected at each disk collision.? It serves as a standard model in the
field of chaos and transport, see refs. 13—15. A one-particle system reflects
more strongly and transparently the nonequilibrium properties induced by
a thermostat. For this reason the Lorentz gas is an appropriate tool to
compare the properties of nonequilibrium steady states obtained from dif-
ferent deterministic and time-reversible thermostating mechanisms.

We perform such a comparison by applying the Nosé—~Hoover thermo-
stat and some variations of it to the periodic Lorentz gas. However, we
also want to consider an alternative thermostating mechanism, thermo-
stating by deterministic scattering, which has recently been introduced for
the periodic Lorentz gas.?”>?® * This deterministic and time-reversible
mechanism is based on including energy transfer between the moving par-
ticle and the disk scatterer at the moment of collision, rather than using a
momentum-dependent friction coefficient. It leads to a canonical probabil-
ity density for the particle in equilibrium, and in nonequilibrium it keeps
the energy of the particle on average constant. Thus, the method of
thermostating by deterministic scattering is closer to the Nosé-Hoover
thermostat then to the Gaussian thermostat.

3 A model almost identical to the driven periodic Lorentz gas, except for some geometric
restrictions, is the Galton board, which was invented in 1873 to study probability distribu-
tions.(®®

4 This mechanism was applied later to a system of hard disks under a temperature gradient
and shear.®®
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Our goal is to study numerically the probability density, the conduc-
tivity and the attractor in nonequilibrium. Furthermore, it is known that
for the Gaussian thermostated Lorentz gas a complicated dependence of
the attractor on the field strength results,'>?*23 which we also study for
the different thermostats. In addition, we briefly elaborate on the identity
between phase-space contraction and entropy production. We then ask
which common properties the Nosé—Hoover thermostat and its variations
share with the Gaussian thermostat and with thermostating by deter-
ministic scattering, and which properties depend on the specific choice of
the thermostat. In Section 2 we introduce the Nosé—Hoover thermostat
and discuss some variations of it. In Section 3 we define the periodic
Lorentz gas and the thermostats we study. We investigate these models in
equilibrium in Section 4 and in nonequilibrium in Section 5. Conclusions
are drawn in Section 6.

2. THE NOSE-HOOVER THERMOSTAT AND
SOME VARIATIONS

In the following sections we consider a one-particle system in two
dimensions with the position coordinates §=(q,, ¢,) and the momentum
coordinates p= (p,, p,). The mass of the particle is set equal to unity. The
equations of motion for the Nosé—Hoover thermostated particle are then
given by®

=7
p=&—(p (1)

¢

)1
<2T > 72
The thermostat variable { couples the particle dynamics to a reservoir. It
controls the kinetic energy of the particle p?/2 such that {p2?)» =2T. This
relation holds even in nonequilibrium as induced by an electric field & 7 is
the response time of the thermostat. Taking the limit 7 — 0 in Egs. (1)
results in the Gaussian thermostat with { = (£ 5)/p% In the limit T — oo the
friction coefficient approaches a constant, { ={_,, and the equations of
motion are not time-reversible anymore. The dynamics of this dissipative
limit has been investigated in ref. 30.
A generalization of the Nosé-Hoover thermostat to control higher
even moments of p was introduced by Hoover.®" The moments are fixed
according to the momentum relations for the Gaussian distribution. This
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more detailed control of the nonequilibrium steady state can improve
statistical dynamical properties, like ergodicity, as has been shown for the
Nosé-Hoover thermostated harmonic oscillator.*>3* In principle the
method of the control of the even moments can straightforwardly be
extended to the control of the odd moments. The control of the odd
moments involves a thermostat variable for the particle current. That
means the conductivity is an additional parameter beside the temperature.
This is physically undesirable, apart from the fact that the respective equa-
tions of motion would not be time-reversible anymore.

We briefly note that there exist other formal generalizations,** or
modifications,®> 3¢ of the Nose-Hoover thermostat in the literature. They
have been critically reviewed in refs. 31-33.

3. VARIATIONS OF THE NOSE-HOOVER THERMOSTAT FOR
THE PERIODIC LORENTZ GAS

The basic thermostating method we investigate in this paper is the
Nosé-Hoover thermostat, Eqs. (1). The structure of the equations of
motion allows to construct infinitely many variations without destroying
the basic properties of time reversibility and by keeping the kinetic energy
on average constant such that {(p?» =2T. In the following we introduce
three specific variations of it, as we argue below:

The first variation is the Nosé—Hoover thermostat with a field depen-
dent coupling to the reservoir,

q=p
Iszax_(l +8x) é,px
py = - pr
2
: 1
{= <p - 1> =
2T T
which is obtained by including the factor 1 +¢, in Egs. (1). Here the coor-
dinate system is chosen such that the field direction is parallel to the x-axis.
The strength of the coupling between particle and reservoir is thus adjusted
to the anisotropy induced by the field. The standard Nosé—-Hoover thermo-
stat Egs. (1) is contained as a special case in equilibrium. Alternatively,
these equations can be written by defining two field-dependent friction
coefficients, &, =(1+¢,){ and &,={, which are governed by ¢, =

(p*2T—1)(1 +&,)/z* and &, = (p*/2T — 1)/7?, respectively. It then becomes
clear that for each momentum component there exists a separate reservoir

(2)
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response time. These are 7/,/1+¢, and 7. With increasing field strength
the corresponding response time decreases.
The second variation first introduced in ref. 31 includes control of

(p*y =8T7,

. p2
p=e=Lp—Gonp
p? 1
2T )72
o= (P )L
2T \2T 72
As described in the previous sections this variation can improve statistical
dynamical properties, like ergodicity.

The third variation controls p? and pi separately. This is performed by
defining two independent reservoirs for the x and y directions,

q=p
p.ngx_gxpx
Py=¢,—(,p, (4)

2
. 1
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& <T >ri
2
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T T

This variation intervenes more deeply in the microscopic dynamics by forc-
ing the single components p2 and pi separately towards canonical distribu-
tions. However, in contrast to the previous variations a curiosity is hidden
in it: At every collision the thermostat variables {, and {, are uncorrelated
to the thermostated variables p, and p,, because p, and p, change at a
collision whereas {, and {, remain the same. Therefore the thermostat does
not work efficiently. But we have not found any reflection of this curiosity
in the macroscopic behavior.

In exactly the same way as the Nosé-Hoover thermostat®” the third
variation with the separate control of p2 and pi can be derived from a
Hamiltonian. One can argue that the first variation is a special case of the
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(b)

Fig. 1. (a) Elementary cell of the periodic Lorentz gas on a triangular lattice, and (b) the
relevant variables.

Nosé-Hoover thermostat, which allows us to draw conclusions about the
existence of a Hamiltonian for it, as is discussed in detail in ref. 38. Perhaps
the second variation can likewise be derived from a Hamiltonian. Although
this variation has already been used extensively in the literature®*3® no
equivalent Hamiltonian has been given.

We study the dynamics of these models for the Lorentz gas cell with
periodic boundaries, as indicated in Fig. l1a. As the radius of the disk we
take r=1. For the spacing between two neighboring disks we choose
w ~0.2361, corresponding to a density equal to 4/5 of the maximum pack-
ing density of the scatterers. A collisionless free flight of the particle is
avoided for this parameter.'”) The relevant variables of the dynamical
system are depicted in Fig. 1b: f is the angular coordinate of the point at
which the particle elastically collides with the disk, and y is the angle of
incidence at this point. Unless declared otherwise the temperature is chosen
to T=0.5.

Between collisions, the equations of motion are integrated by a fourth-
order Runge-Kutta algorithm with a step size of dt=0.005.** Whenever
a collision occurs, the collision of the particle with the disk has been deter-
mined with a precision of 1077.°

> We have checked our program by applying it to the Gaussian thermostated Lorentz gas.
The qualitative (attractor) and quantitative results (conductivity) agree with the results in
ref. 23. We have also verified our results for the Nosé—Hoover thermostat and for the three
variations by doing some test runs with a step size of df=0.0001. The dependence of the
results on the step size was insignificant.
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4. EQUILIBRIUM

For equilibrium systems with mixing dynamics, Nosé-Hoover type
thermostats should generate a canonical probability density as the station-
ary solution of the Liouville equation. However, as is discussed in the
following, only the third variation yields a canonical distribution in equi-
librium, that is, only this variation appears to be mixing.

Inserting the initial condition (p,, {,) ﬁ 0) in Egs. (1) with ¢=0
the velocity of the particle becomes a constant, p —ﬁ , that means the
Nosé—Hoover thermostat does not act in the Lorentz gas and the dynamics
is microcanonical. For other initial conditions one observes in computer
simulations that p? and ( oscillate periodically and that the dynamics of
this one-particle system is nonergodic.

A stability analysis confirms the numerical results: The Nosé-Hoover
thermostated equations of motion Egs. (1) can be reduced for ¢=0 to

=-20p*

(5)
(P _\1
C_<2T 1>r2

Egs. (5) are also valid at the moment of a collision, because p? and { are
not changed by a collision. The fixed point of Egs. (5) is (p% {) = (2T, 0)
with the eigenvalues A,,= +./ —47/t* and is thus elliptic.

The additional control of {p*>, see Eq. (4), destroys the microcanoni-
cal probability density but it is not sufficient to obtain a mixing dynamics
in the periodic Lorentz gas. Different initial conditions still lead to a dif-
ferent shape of the momentum probability density o(p,). In contrast, the
separate control of p2 and p leads to a mixing dynamics in equilibrium
corresponding to the canonical probability density o(p,).®*

5. NONEQUILIBRIUM

We now apply an external electric field & parallel to the x-axis. The
Nosé-Hoover thermostat and the related models then lead to well defined
nonequilibrium steady states with constant average energy of the particle.

The precise definition of temperature in nonequilibrium is problematic,®
but the discussions in refs. 2 and 13 provide a kinetic-theory argument
supporting the usual choice. We follow here the argument of ref. 29: In
equilibrium the temperature of the particle and of the thermal reservoir is
unambiguously defined by 7= {v?}/2. In nonequilibrium the temperature
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of the particle is defined by the kinetic energy in the comoving frame,
T =({v*> —<{v,>?)/2. However, the kinetic energy in the fixed frame T is
still relevant for tuning the interaction between particle and reservoir, such
that T can be defined as the reservoir temperature. This is the notation
conventionally used in the literature,®’ which we apply here as well.

5.1. Probability Density o( p,)

In this subsection we have chosen 7'=0.60029 which corresponds to
the reservoir temperature we found in a system thermostated by deter-
ministic scattering at a parametric temperature of 7=0.5 and at a field
strength of ¢ =0.5.2":2®

The momentum probability density o(p,) for the Nosé-Hoover
thermostat for ¢=0.5 is presented in Fig. 2a. For t>=0.01 the density
shows some similarity to the deformed microcanonical density of the
Gaussian thermostat appearing in the limit 7 — 0, whereas for t>=1 and
72=1000 the density becomes similar to the density of thermostating by
deterministic scattering, which is related to a canonical distribution.?”->®

Figure 2b shows g(p,) for the three variations of the Nosé-Hoover
thermostat. The density of the Nosé—-Hoover thermostat with field-depen-
dent coupling to the reservoir is very close to the density of thermostating
by deterministic scattering. The density of the Nosé—Hoover thermostat

(@) 0.6 (b) 0.6 -
i |
o ,’;r\\
— / E \\ — /r \\\
g : / \ g T
y !
7 ; / %
// \ J \\\
0.0 A D 0.0 E— >
-3 0 3 -3 0 3
px pX

Fig. 2. Probability density o(p,) for e=0.5: (a) Nosé-Hoover thermostat with 72>=0.01
(dotted curve), t>=1 (dashed curve), > =1000 (long dashed curve) and thermostating by
deterministic scattering (solid curve), (b) Nosé-Hoover thermostat with field-dependent
coupling to the reservoir with t>=1 (dotted curve), additional control of {p*» with ?=1
(dashed curve), control of {p2> and <p}> separately with 7> =0.1 and 7;= 1000 (long dashed
curve) and thermostating by deterministic scattering (solid curve).
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with separate control of p and p; looks like a superposition of the den-
sities of the Nosé—Hoover thermostat for small and for large 7.

In all the models the mean value of ¢(p,) is positive, indicating a
current parallel to the field direction.

5.2. Conductivity

The conductivity o= {p,>/e for the Nosé-Hoover thermostat is
shown in Fig. 3. For t?=0.01 the curve is very similar to the conductivity
of the Gaussian thermostated Lorentz gas.®*® For t>=1000 the curve is
more stretched along the ¢ axis and it is not clear whether it is globally
decreasing or increasing. In contrast the conductivity as obtained from
thermostating by deterministic scattering®”?® is a globally decreasing
function. According to the Einstein relation, in the limit ¢ > 0 ¢ should
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Fig. 3. Conductivity ¢ for the Nosé-Hoover thermostat, (a) 2=0.01, (b) *>=1000. The
numerical uncertainty of each point is less then symbol size. For field strengths ¢ <0.1 reliable
numerical values could not be obtained 7> = 1.



70 Rateitschak, Klages, and Hoover

approach the equilibrium diffusion coefficient D of the periodic Lorentz
gas, which for w=0.2361 has the value D ~0.21.?% This is hard to see for
72=1000, because for ¢ — 0 the probability density changes drastically
from a smooth, canonical like density to a non-smooth density. It is also
difficult to see any linear response in computer simulations, as has already
been discussed for the Gaussian thermostated Lorentz gas and for thermo-
stating by deterministic scattering in ref. 28.

5.3. Attractor

Figure 4 shows the Poincaré section at the moment of the collision
defined by the variables (f, sin(y)), see Fig. 1b, for the Nosé-Hoover

p p

Fig. 4. Poincaré section of (f, sin y), as defined in Fig. 1 at the moment of the collision for
e=1: (a) Nosé—Hoover thermostat, 7> =0.01, (b)-(d) variations of the Nosé-Hoover thermo-
stat: (b) field-dependent coupling to the reservoir, 2 =1, (c) additional control of p* 72=1,
(d) control of p% and p? separately, 7= 0.1 and 7} = 1000.
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thermostat and for the three variations. We have chosen ¢=1.0 and T=
0.7740645 to compare the results with thermostating by deterministic scat-
tering. For all models the structure of the attractor is qualitatively the same
as the structure of the attractor obtained for the Gaussian thermostated
Lorentz gas'® !V and for the Lorentz gas as thermostated by deterministic
scattering.®”-?® The additional degree of freedom in the second and third
variation does not lead to significant changes. However, the fine structure
varies with the models and with the response time 7: For the Nosé—Hoover
thermostat with 72=0.01, see Fig. 4a, the structure is most pronounced,
whereas for the control of p2 and pi separately, see Fig. 4d, the structure
is least visible. More results for attractors are contained in ref. 39. We
remark that in refs. 11 and 24 a multifractal spectrum of dimensions has
been found for the attractor of the Gaussian thermostated Lorentz gas.
Because of their completely analogous structure, we expect that the attrac-
tors of our models are also multifractal.!* More qualitative evidence, from
the field dependence of the Poincaré sections, is presented below.

5.4. Bifurcation Diagram

In Figs. 5 and 6 we present the observed values of the angle f, sce
Fig. 1b, in the steady state over the field strength ¢ at the moment of the
collision. These diagrams thus correspond to a reduced view of the phase
space of Fig. 4 by projecting out the variable sin(y). The fine structure of
Fig. 4 is therefore suppressed in the following figures which emphasize the
field-strength-dependence of the attractor.

Figures 5a and 5b show the bifurcation diagram for the Nosé-Hoover
thermostat. For the two values of 72 the attractor covers the whole 8 inter-
val for small field strengths ¢ < 1.3 and contracts onto a periodic orbit with
increasing field strength. For 72 =0.01 the scenario is similar to the one of
the Gaussian thermostated Lorentz gas.®®® ¢ For 72= 1000 the scenario is
complicated too, but it is less rich between these two values.”

In contrast to the Nosé—Hoover thermostat, the attractor of thermo-
stating by deterministic scattering remains f interval filling even for
large £.?7-2%

The bifurcation diagram in the dissipative limit 7 — oo of Egs. (1) with
a constant friction coefficient {, shows an inverse scenario to Figs. 5a and
5b, as is presented in Fig. 5c. For small ¢ the trajectory is a so-called
creeping orbit,*” then it changes to a periodic orbit, and for large ¢ the

®In Fig. 10 of ref. 23 the angle of flight after a collision is plotted and the field is parallel to
the negative x-axis.
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0 2 4 6 8 10

Fig. 5. Bifurcation diagram for the Nosé-Hoover thermostat, (a) t>=0.01, (b) 2= 1000,
and (c) dissipative limit, {,=1.0.

attractor gets f-interval filling. By increasing (. the strength of the dissipa-
tion increases with the consequence that the onset of chaotic behavior
starts at higher field strengths.©®*®) We remark that related to the different
shapes of the attractors by varying (. in the dissipative limit, the duration
of the transient behavior of the Nosé-Hoover thermostat grows drastically
for 7 — oo.

Figure 6 shows the bifurcation diagrams for the three variations of the
Nosé-Hoover thermostat. In general one observes that even for high field
strengths chaotic regions appear, in contrast to the Nosé—Hoover thermo-
stat.

For the variation with the additional control of p* in Fig. 6b the
attractor covers a bounded f interval for ¢ > 3. For these field strengths the
trajectory is a creeping orbit.

Figure 6¢ depicts the attractor for the variation with separate control
of p2 and pi under different response times for the x and y direction. Since
the field acts in the x direction we have chosen a strong couplings 72 =0.1,
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for the x direction and a weak coupling, rf,z 1000, for the y direction.
Up to a field strength ¢~ 6.5 no periodic window has been found. The
bifurcation diagram for these parameters most strongly deviates from the
Nosé-Hoover and Gaussian thermostated Lorentz gas and is closest to the
bifurcation diagram of thermostating by deterministic scattering. However,
in contrast to thermostating by deterministic scattering the attractor is
more concentrated around f ~ 7.

We detected a numerical problem for the second and the third varia-
tion at several values of 7. One observes that sporadically after large time
intervals there appears a creeping orbit with a very low velocity of the par-
ticle, which is difficult to handle numerically. Whether this creeping orbit
is the stationary state could perhaps be clarified by calculating Lyapunov
exponents.?

The bifurcation diagrams for the Nosé-Hoover thermostat and the three
variations show a rich dynamics composed of chaotic region, chaos-order

€

Fig. 6. Bifurcation diagram for the variations of the Nosé—Hoover thermostat: (a) field-
dependent coupling to the reservoir, 7> = 1, (b) additional control of p* 7> =1, and (c) control
of p% and p} separately, 73 =0.1, 7} =1000.



74 Rateitschak, Klages, and Hoover

transitions and periodic orbits. It would be interesting to study the field
dependence of the attractor in more detail, e.g., according to which
scenario does the transitions from order to chaos occur, is the dynamics
nonergodic for certain parameters as it has been found for the Gaussian
thermostated Lorentz gas‘®® and where are the chaotic and the integrable
regions.

5.5. Thermodynamic Entropy Production and Phase-Space
Volume Contraction

A characteristic property of the Nosé—Hoover thermostat as well as of
the Gaussian isokinetic thermostat is that the thermodynamic entropy
production is equal to the phase-space volume contraction rate if one
associates T to the relevant temperature.> 71 This equality can also
easily be obtained for the variation with the additional control of p* and
for the variation with separate control of p? and p?.

On the other hand it does not hold for the Nosé—Hoover thermostat
with field-dependent coupling to the reservoir. From Egs. (2) one gets for
the phase-space contraction rate of this model —{div Iy =(2+¢,){(>
where I'= (g, j, {). The precise relation between thermodynamic entropy
productions S, =¢,{p,>/T and —{div I'y for this variation is obtained
by calculating the energy balance between subsystem and reservoir:!”

p2

E="+T0¢ (6)

is the total energy the time derivative of which in a nonequilibrium steady
state on average is zero,
dE
— =0 7
(%) 7

Inserting Egs. (2) in Eqgs. (7) leads to

e Py eLpi)
T T

Numerical simulations have shown that p2 and { are not independent
quantities in nonequilibrium. If p? and { were independent and equi-
partition were fulfilled, {p2)» = T, which is only the case in equilibrium,
then Eq. (8) would lead to an identity between thermodynamic entropy
production and phase-space volume contraction. The results for —{div I")
and for S, as obtained from computer simulations for this system are

+2{> (8)
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Table I. Phase-Space Volume Contraction Rate and Thermodynamic Entropy
Production for the Nosé-Hoover Thermostat with Field Dependent Coupling
to the Reservoir. The Numerical Error Is <0.001

2=1 72=1000
e —(divIy Stp —(div Iy Stp
0.5 0.152 0.145 0.145 0.147
1.0 0.547 0.561 0.567 0.592
1.5 1.240 1.366 1.256 1.391

presented in Table I at different 7 and & More details of the entropy
production in this variation and in a Gaussian thermostat with the same
property are discussed in ref. 38.

6. CONCLUSIONS

We have investigated the Nosé-Hoover thermostat and three varia-
tions of it for the periodic Lorentz gas. All models are time-reversible and
lead to well defined nonequilibrium steady states with a constant average
kinetic energy of the moving particle.

The dynamical properties of these models have been compared with the
Gaussian thermostated Lorentz gas and with the Lorentz gas as thermo-
stated by deterministic scattering. The main results are the following:

1. It has been confirmed that in nonequilibrium all our models con-
tract onto attractors similar to the multifractal attractor of the Gaussian
thermostated Lorentz gas. This appears to be a typical characteristic of
deterministic and time-reversible thermostating mechanisms. It would be
interesting to have a mathematical proof for this statement.

2. The structure of the bifurcation diagram, the conductivity and the
momentum probability densities depend on the thermostating mechanism.
Concerning these properties the standard Nosé-Hoover thermostat in the
periodic Lorentz gas is closer to the Gaussian thermostat than to thermo-
stating by deterministic scattering. This is surprising, because the Nosé-
Hoover thermostat and thermostating by deterministic scattering share the
property of keeping the energy of the particle on average constant in non-
equilibrium. In contrast, the equilibrium properties and the bifurcation
diagram in nonequilibrium of the third variation are qualitatively closest to
the properties of thermostating by deterministic scattering.
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3. The identity between phase-space contraction and thermodynamic
entropy production does not hold for the first variation. This property was
accepted up to now as a general characterization of nonequilibrium steady
states generated by Gaussian and Nosé-Hoover thermostats.

In summary, the existence of a multifractal attractor in nonequilibrium
steady states is the only typical feature of these thermostat models. This
fractal character reflects the extreme rarity, relative to equilibrium states, of
nonequilibrium states. To look for additional common properties of all
deterministic and time-reversible thermostats remains an important ques-
tion, which is intimately related to obtaining a general characterization of
nonequilibrium steady states. A more detailed investigation would
emphasize quantitative comparisons of these thermostating mechanisms,
including computing Lyapunov exponents and a selection of fractal dimen-
sions.
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